
Brief Communication

Pressure wave speeds from the characteristics
of two ¯uids, two-phase hyperbolic

equation system

Sung-Jae Lee a, Keun-Shik Changb,*, Kyungdoo Kima

aKorea Atomic Energy Research Institute, Thermo-hydraulic Research Team, Yusung-ku, Taejon 305-353, Korea
bKorea Advanced Institute of Science and Technology, Aerospace Engineering Department, 373-1 Kusong-Dong,

Yusung-Ku, Taejon 305-701, Korea

Received 7 June 1997; received in revised form 25 November 1997

1. Introduction

Considerable e�ort has been made in the past, without much success, to determine the
pressure wave propagation speed for two ¯uids, two-phase ¯ow. Delhaye et al. (1981) and Ishii
(1975) have showed systematic derivation of the governing equations for two-phase ¯ows.
However, this governing equation system has complex characteristics, making the two-phase
¯ow formulation mathematically ill-posed, see Ramshaw and Trapp (1978); Stewart (1979).
Various modi®cations of the governing equations has therefore been followed to render the
characteristic roots real.
The single-pressure models in the classical two ¯uids, two-phase formulation assume that the

pressure is continuous across the interface boundary. Unfortunately, these models lead to the
afore-mentioned complex eigenvalues for the practical problems under review. In contrast, the
two-pressure models assume that the gas and the liquid pressures are not necessarily
continuous across the interface. These models have, as a matter of fact, produced real
eigenvalues, see Ransom and Hicks (1984); Holm and Kupershmidt (1986); Ramshaw and
Trapp (1978). However, most of the two-pressure models are either de®cient of the constraint
binding the two phasic pressures, producing nonphysical behavior in the solution, or based on
the pressure constraints true only for a particular type of two-phase ¯ows.
To construct new two ¯uids and two-phase ¯ow formulation, we consider one-dimensional

mass and momentum conservation equations
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The subscript k is for either phase (k = G,L) and i is for the interface; E, r, � are respectively
the void fraction, the density, and the ¯ow velocity. The source terms fc,k and fm,k on the
right hand side of (1) and (2) do not a�ect the mathematical type of the partial di�erential
equations. The above system of equations has more unknowns than the number of equations.
The innovative feature of the present formulation is that we have introduced a small
di�erential pressure force term, ( pkÿpi)@Ek=@x, as a force balance in the momentum equations.
Although this term which will be derived from the surface physics shortly might be very small,
it converts the equation system into hyperbolic type without introducing the virtual mass or
arti®cial additive terms, unlike the earlier formulations.

2. Pressure constraint

For a sphere having an in®nitely thin ®lm of radius R and surface tension s, the well-known
Young and Laplace's formula becomes

pG ÿ pL � 2s
R

�3�

For a very thin ®lm of ®nite thickness d, this equation should be modi®ed to the form

pG ÿ pL � 2d
RG � d=2

s
d

� �
� 2d

RL ÿ d=2
s
d

� �
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where the radius R in (3) is replaced by RG+d/2 or RLÿd/2 the distance from the center of the
sphere to the half thickness of the thin ®lm, or the average distance to the ®lm; see Fig. 1. This

Fig. 1. Spherical interface model with ®nite thickness d.
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thin ®lm of thickness d can represent the hypothetical interfacial thickness estimated earlier in

the statistical mechanics, see Clive (1980); Egelsta� and Widom (1970); Present (1974).

Let Ai and VG denote respectively the surface area and the gas volume of the sphere with the

interface ®lm at the average distance RG+d/2. When the radius of the sphere is changed by the

increment DRG, the surface area and the gas volume will be accordingly changed, satisfying

RG

2

DAi

DVG

� �
� 1ÿ d=2

RG � d=2
�5�

For the liquid side, the above relation is subject to

RL

2
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DVL

� �
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RL ÿ d=2
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In the limit for DRG40 with the total volume V= VL+VG, it holds that
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whereai is the interfacial area per unit volume. Equation (4) then becomes, upon using (5) and

(7),
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d

� �
1ÿ RG

2

@ai
@EG

� �
�8�

The factor 4s/d in the right hand side plays the role of a Lagrangian multiplier given in

Papalambros and Douglass (1988) and Aubin and Ekeland (1984), which helps to identify a

particular two-phase ¯ow regime under consideration.

Relationship between the surface tension and the surface thickness has been sought for a

long time. It is now known from the statistical mechanics and the physical chemistry that an

approximation can be made as Cs/d = L. Here C is a constant and L is a bulk modulus.

From this and the physics of surface tension at the interface where the density is

discontinuous, the so-called bulk modulus, 4s/d = L, can be split into two parts as follows

4s
d
� LG � LL �9�

By means of (5)±(7), (8) is changed to
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In (10) above, we can safely assume for a steady equilibrium two-phase ¯ow that the phasic

properties remain ®xed without interchange between phases. Consequently, we can claim that

�pG ÿ pi� � ÿLG 1ÿ RG
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�pL ÿ pi� � LL 1� RL
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The above equations have the following consequences to be explained. Firstly, the surface
tension thickness can be reversely obtained by

d � 4s
�LG � LL� �13�

Equation (13) is, as a matter of fact, very close to an existing relation in the physical
chemistry, namely,

l1swt=2c �14�
which is derived from the van der Waals/Cahn-Hilliard equation (Clive, 1980). Here c is a
constant, wt is isothermal compressibility, and l is a measure of the interfacial thickness. It is,
however, applicable when the liquid density is substantially larger than the gas density. Upon
inserting physical data, (13) correctly veri®es the physical observation that most liquids have
surface thickness d of an angstrom unit. Secondly, we ®nd that the two-phase ¯ow regimes can
be obtained by di�erent combination of the two bulk moduli, LG and LL. It is in contrast to
other existing two-phase models. Thirdly, the experimental pressure-wave propagation can be
correctly simulated by the present surface tension model. From (10)±(12), the relation between
the phasic pressure jumps and the bulk moduli are obtained as follows

�pG ÿ pi�
�pG ÿ pL� �

LG

LG � LL
�15�

�pi ÿ pL�
�pG ÿ pL� �

LL

LG � LL
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3. Characteristics of the hyperbolic equation system

Using the identity @pG=@x � @pL=@x derived from (3) for the constants s and d, and the
isentropic pressure-density relation @pk � @pk=C2

k where Ck is the sonic speed, we can rewrite
the conservation equations as
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where fm,k is changed to a new term f'm,k to take the contribution from the mass source term
fc,k into account. Also n is the exponent to distinguish the phasic states, with 1 for the gas and
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2 for the liquid phase. The coupled quasi-linear partial di�erential equation system takes a
compact matrix form

A
@H

@t
� B

@H

@x
� E �19�

Here H is a state vector having four primitive variables, EG, pG, uG, and uL; A and B are the
coe�cient matrices, and E is a source vector to be given by the empirical correlations. The
eigenvalues l of the coe�cient matrix G = Aÿ1. B are determined from the characteristic
equation, det(Gÿ lI) = 0. A fourth-order polynomial equation is obtained as

P4�l� � �lÿ �G�2�lÿ �L�2 ÿ K1�lÿ �G�2 ÿ K2�lÿ �L�2 � K3 �20�
where
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GC

2
L�EGLL � ELLG�

EGrLC
2
L � ELrGC

2
G
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The above characteristic equation has three sets of four distinct real eigenvalues that depend
on the multipliers LG and LL. It is remarkable to note that these three distinct eigenvalue sets
represent the three known two-phase ¯ow regimes, namely the dispersed, the slug, and the
separated ¯ows. The eigenvalue sets are listed in Table 1.
Other than the above real eigenvalue sets, no other meaningful characteristic roots could be

found due to the complexity of the equations. In the above, the multipliers, LG and LL, are
obtained from the simpli®ed physical models as follows.

Table 1
The distinct real eigenvalue sets dependent on Lk

Slug ¯ow regime l1,2=�G2CL

l3,4=�G2CG

Dispersed ¯ow regime
l1;2 � �L2CL

��������������������������������������
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2
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2
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s
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Separated ¯ow regime
l1;2 � �L2CL

��������������������������������������
ELrGC2

G
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2
G � EGrLC

2
L

s
l3,4=�G2CG
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3.1. Slug ¯ow

Since there is no elastic interaction between the two ¯uids and the sonic wave traveling in
one ¯uid is not disturbed by the other ¯uid in the slug ¯ow regime shown in Fig. 2, the time
taken by the sonic wave to travel in the slug-¯ow column is equal to sum of the propagation
time in each phase. Then the bulk modulus in each phase is identical to that of the single
phase, namely,

LG � rGC
2
G �24�

LL � rLC
2
L �25�

3.2. Homogeneous ¯ow

Mixture bulk modulus of the two ¯uids becomes

Lm � ÿV dp

dV
� ÿV dp

dVL � dVG
� V

dp

VLdp

LL;s
� VGdp

LG;s

�26�

where V= VG+VL is the total volume of the mixture, and LG,s and LL,s are the bulk moduli
of the single phases. For two phases of liquid and gas, it obviously holds that LG,sWLL,s. Then,
(26) leads to

Lm � LG;s

EG
�27�

Equation (27) shows that the mixture bulk modulus is rather close to that of the gas than the
liquid. Since the two ¯uids must have the same average bulk modulus for the homogeneous
two ¯uids, it holds that Lm=(LL+LG)1LG,s/EG. Therefore, we can now set the bulk moduli as

LG � rGC
2
G �28�

Fig. 2. Simpli®ed physical model for the slug ¯ow regime.
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LL � rGC
2
G

EL
EG
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Assuming EG=EL=0.5, we let LL =rGCG
2 . It will be observed later that this assumption of

particular void fraction for LL will not hamper the good comparison of the results with the
experiment.
To be able to maintain perfect mixing, the characteristic length d in (13) can be considered

as a minimum distance separating the two ¯uids which have di�erent bulk pressures due to the
surface tension, that is,

d � 2s
rGC

2
G

�30�

It is very exciting to note that this equation appears very close to the existing equation,
R0=2sT/r2hy0 (Van Stralen 1966), for the minimum radius of bubble nuclei in homogeneous
nucleation process (see Blander and Katz, 1975). Here T, h and y0 are respectively the
saturation temperature, latent heat of vaporization, and initial superheating temperature.
Substituting the physical data, we ®nd that both d in (30) and R0 have the same 10ÿ6 m order
of magnitude for many liquids. It is noted that the initial bubble nucleation in a liquid can
therefore be expressed by a pure mechanical process.

3.3. Separated ¯ow

In the case of the separated ¯ow, it has been known that the pressure wave in gas is not
transmitted into the liquid but most of the wave is re¯ected. Otherwise, it could be changed
into capillary waves on the liquid surface. Unfortunately, the propagation mechanism of
parallel pressure wave on the interface has not been well studied (Fig. 3). We set here the
values of Lk approximately as follows:

LG � rGC
2
G �31�

LL � 0 �32�
On the other hand, Nguyen derived the sonic speed from the equations of continuity and
momentum, considering a stationary wave front in a moving single phase medium as in Fig. 4.

Fig. 3. Simpli®ed physical model for the separated ¯ow regime.
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Combining of the continuity and momentum equations yields

�2 � 1

rdV
Vdp
� dr

dp

� C2 �33�

Equation (33) depicts the e�ective sonic speed of the individual phase con®ned by an elastic
boundary. The e�ective sonic speed depends upon the cross-sectional variation, dV/V, or the

Fig. 4. Propagation model of an in®nitesimal pressure pulse.

Table 2

Comparison of the e�ective sonic speeds in each phase

Present model Nguyen model

Slug ¯ow regime (liquid/gas) CL CL

CG CG

Dispersed ¯ow regime

CL

��������������������������������������
rGC

2
G

ELrGC
2
G � EGrLC

2
L

s
CL

��������������������������������������
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2
G
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G � EGrLC

2
L

s

CG

CG

��������������������������������������
rLC

2
L

ELrGC
2
G � EGrLC

2
L

s

Separated ¯ow regime

CL

��������������������������������������
ELrGC

2
G

ELrGC
2
G � EGrLC

2
L

s
CL

��������������������������������������
ELrGC

2
G

ELrGC
2
G � EGrLC

2
L

s

CG

CG

��������������������������������������
EGrLC

2
L

ELrGC
2
G � EGrLC

2
L

s
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void-fraction variation which is replaced by a reasonable physical model for each ¯ow regime.
These Nguyen's values are compared with the present results in Table 2.
The basic di�erence between the two physical models is that Nguyen does not consider the

interfacial discontinuity of the momentum caused by the surface tension. If the surface tension
can be ignored (when bubble size is large enough to separate), Nguyen's result could be more
accurate than the present one. However, Nguyen's result shows such nonphysical phenomenon
that the sonic speed of gas is greater than that of the single phase at the limiting state (E40) in

Table 3
Comparison of the e�ective sonic speeds in the limiting cases

Present model Nguyen model

E40 E41 E40 E41

gas Liquid gas Liquid gas Liquid gas Liquid

Slug ¯ow CG CL CG CL CG CL CG CL

Homogeneous

¯ow

CG CL CG

CG

������������
rGC

2
G

rLC
2
L

s
� CG

������������
rLC

2
L

rGC
2
G

s
CL CG

CG

������������
rGC

2
G

rLC
2
L

s

Separated
¯ow

CG CL CG 0 0 CL CG 0

Physically the e�ective sonic speed cannot be larger than that of the single phase. However, as marked with *,

Nguyen's model gives sonic speed for the gas in homogeneous ¯ow much greater than CG or even CL.

Table 4
Comparison of total speed of sound

Flow regimes Models

Present results Theoretical results by Nguyen et al.

Slug ¯ow
Ci � CGCL

ELCG � EGCL
Ci � CGCL

ELCG � EGCL

Dispersed ¯ow

Ci �
CGCL

��������������������������
rGC

2
G

ELrGC
2
G
�EGrLC2

L

r
ELCG � EGCL

��������������������������
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2
G
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2
G
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L

r Ci �
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G
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2
G
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L

r
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p � EG
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p

Separated ¯ow

Ci �
CGCL

��������������������������
ELrGC

2
G

ELrGC
2
G
�EGrLC2

L

r
ELCG � EGCL

��������������������������
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2
G

ELrGC
2
G
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L

r Ci �
CGCL

��������������������������
EGELrGC

2
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2
G
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r
EL
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p � EG

����������
ELrG
p
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the homogeneous ¯ow regime (Table 3). In contrast, the present model suggests adequate
values in all of the ¯ow regimes.
To test the accuracy of the present theory, the eigenvalues are compared with both the

experimental speeds of sound measured by Henry et al. (1971) and the theoretical results by
Nguyen et al. (1981). For this purpose, we ®rst de®ne a total speed of sound, weighted by the

Fig. 6. Total speed of sound: water-air dispersed ¯ow.

Fig. 5. Total speed of sound: water-vapor dispersed ¯ow.
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void fraction of the individual phase:

Ct � l1l3
ELl3 � EGl1

�34�

Table 4 compares the present total speed of sound with that of Nguyen et al. The present
result shows good agreement with both Nguyen et al.'s and experimental values for both the

Fig. 7. Total speed of sound: water-air slug ¯ow.

Fig. 8. Total speed of sound: water-vapor separated ¯ow.
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water-vapor ¯ow in Fig. 5 and water-air dispersed ¯ows in Fig. 6. Figs. 7 and 8 show the total
speed of sound agreeing well with the experimental values for other ¯ow regimes like water-air
slug ¯ow and water-vapor separated ¯ow.

4. Conclusions

We have theoretically predicted the phasic speeds of sound in the two-phase mixture by
means of the eigenvalues of the two ¯uids equation system. The pressure discontinuity at the
interface which is properly treated using the surface physics resulted in excellent agreement of
the present results with the experiment. Although application of the present theory is made to
a two-phase acoustic problem in this paper, transient two-phase ¯ow regimes can be treated in
the future.
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